ELAN - Flex - ELAN “round trip” workflow

John Mansfield, University of Melbourne, 29 May 2015

Main steps:

Transcribe recording in ELAN

Export to .flextext format

Import into Flex

Interlinearise in Flex

Export in .flextext format

Merge interlinear analysis with original .flextext file
Import .flextext back into ELAN

Run a tier-renaming script on the .eaf file

© © N o ;s W o

ELAN file is now ready for further transcription, contains morphological
analysis, and can go on another round trip if further interlinearisation is

required.

Note: this guide is based on ELAN 4.9, and SIL Fieldworks Language Explorer 8
(“Flex”).

1. Transcribe recording in ELAN

Transcribe as per normal using MPI ELAN. You can use whatever tiers you want,
though some might have their names changed. But note, however, that an
utterance > word > morph hierarchical structure is assumed for this entire
process. L.e. the tier hierarchy should look something like this (for a simple

transcript):

1
ngarra-wa beisik kat nankungintha-yu

where the hell is you and your wife's basic card?

P —— R — S—— N———
I 00:03:08[000 00:03:09.000 00:03:10.000 00:03:11.000 (
IJ_q_‘ A ohrase da mere-warda bangkadhap-ngurru darrarart |
phrase |
N | won't go back to stealing any more
rans
A_comment
AES
A da mere-warda bangkadhap- darrarart
Ig_‘ o " da mere -ward ba ngk =ng_darrarart
A morph
. da mere -ward ba ngk ngu_ darrarart
A citeMorp 1 1 2
H JA’L PLT NEG TEMP 1S mak =15, thief
H ' NC Neg Adver CS_ Cov CS .n

2. Export to .flextext format

Use the ELAN menu option, File > Export As > FLEx File. This will prompt you
through four steps:

Steps 1 and 2 don’t ever seem to require deviation from the default settings. If
there is a problem here, this guide will have to be updated accordingly.

Step 3 does require some setting: basically you have to map your ELAN tiers to
the Flex data types. The basic tier types map as follows:

transcription — txt

translation — gls

comments — comment

word/morph parsing — txt

word/morph glossing — gls

The dialogue lets you map each ELAN tier type as generalisation (use this if you

have multiple transcript tiers, multiple translation tiers, etc), or map individual

ELAN tiers. Both options seem to work fine. Here’s the mapping for a simple

transcription file, with no interlinearisation or specialty tiers:

Export as FLEx file

Step 3/4: Element-item 'type' and 'lang' attribute configuration

Specify the value for type and lang attribute based on

() tier (®) linguistic type

Linguistic Type Name

type language
interlinear-text
phrase
text xt mwif
trans gls en
note comment en
word
morph

Type-Lang value configuration
Add/remove values for

Add custom value

) type (®) language

| Add |
Select the value to be removed | cgelect> 4| [Remove |
Previous | | Next | Cancel |

You also need to specify for each tier whether it is the language being

transcribed (e.g. Murrinhpatha (mwf)) or English (en). These language codes are
not already in the ELAN system, so you add them down the bottom of the

dialogue box with “Add custom value (language)”.

Here’s the mapping I've used for exporting a rather complex transcript that

already has interlinearisation. The ELAN tier names I've been using here are

designed to match the Flex data structure in an intuitive way:

[o] Export as FLEx file

Step 3/4: Element-item 'type' and 'lang' attribute configuration

Specify the value for type and lang attribute based on

(#) tier () linguistic type
TierName type language
interlinear-text
phrase
A_phrase txt mwf
A_comment comment en
A_trans| gls en
word
A_word txt mwf
morph
A_morph txt mwf
A_citeMorph of mwf
A_gls gls en
A_partSpeech msa en

Type-Lang value configuration

Add/remove values for) type O] language

Add custom value Ad

Select the value to be removed | cgelect> ™ Remove |
Previous | Next | Cancel

You might have to add custom data types for any specialty tiers you've used.
ELAN will let you add any data type you like, but the names of these types should
adhere to some kind of standard naming for the corpus you're building,

otherwise they won’t gel with other tools down the track.

Export file should have same name as original, but with .eaf changed to .flextext.

And they should sit alongside each other in your corpus directory structure.

3. Import into Flex

Straightforward, no options to set.
But if this transcription is already in your Flex project, you should take some
steps to avoid duplicating it. I would suggest 1) rename old version of transcript

in Flex; 2) import new version; 3) delete old version if satisfied with import.

4. Interlinearise in Flex

Do it.

5. Export in .flextext format

When you are sick of interlinearising, export it back out again. You must save it
back into the relevant corpus directory, now with the file ending

.postflex.flextext

6. Merge interlinear analysis with original .flextext file

The biggest limitation with Flex interlinearisation is that most (or all) custom
tiers in your .flextext file are not retained when it goes in and out of the program.
So essentially you just want to get the interlinearised analysis that Flex has
produced, and insert it into your original .flextext file. Do this using the XSL
script merge-interlinear.xsl.

Also you will often have fixed some transcriptions or translations while
interlinearising in Flex. Therefore this merge process overwrites the originals of

these tiers, unless you ask it not to by using the option overwrite=no.

Examples of usage:

java -jar -Xmx1024m /Library/SaxonHE9-4-0-4J/saxon9he.jar -t
Magultje-test.flextext merge-interlinear.xsl interlin=Magultje-

test.postFlex.flextext overwrite=no > Magultje-test.merge.flextext

or

java -jar -Xmx1024m /Library/SaxonHE9-4-0-4J/saxon9he.jar -t
../archival/1990 Bible/01 Zechariah.flextext merge-interlinear.xsl
interlin=../archival/1990_Bible/01_Zechariah.postflex.flextext
>../archival/1990 Bible/01 Zechariah.merge.flextext

The two earlier flextext files should be moved to the /old-versions folder that
you keep for every corpus session. The merged version will be the file used for
corpus analysis, because it’s a much more elegant data structure than ELAN'’s .eaf

format.

Note that the .postflex file must be merged with the same .flextext file from
which it originated. I.e. you cannot re-export from ELAN and use that to merge
with the .postflex. This is because the merge process depends on recognition of

element identifiers created in the ELAN export.

7. Import .flextext back into ELAN

The merge script will have produced a file that you should import into ELAN. I've

just been leaving all the options at default here.

Re-imported file should have file extension .merge.eaf

Note that where there are many files being processed as part of a task, the ELAN

“Import multiple files” option can be used to do, say, a whole directory at a time.

8. Run a tier-renaming script on the .eaf file

The file back in ELAN now has awkward (but highly logical) tier names, derived
from the Flex data structure. You could change all these. To convert these into
nicer, shorter tier names, use the script rename-tiers.py. (Also does the
accompanying .pfsx file.)! Output of this will appear with an .edit.xml extension.

If the output is okay, replace the original with it.

Usage:

python rename-tiers.py ../PATH/TO/FILE.merge.eaf

The output will have the same filename, but extension just .eaf

LIn an earlier version of the script, the input ELAN file was sent into the associated /old-versions
directory, and the output appeared in place of the input. This has now been changed to output

reducing the .merge.eaf extension to simply .eaf

NB this can only happen after re-importing merged flex data into ELAN. Because
it is the import process that creates the cumbersome tier names.
9. Done

ELAN file is now ready for further transcription, contains morphological analysis,

and can go on another round trip if further interlinearisation is required.

